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Abstract. [In this paper we prove that the cosymplectic reduction of cosymplectic manifolds
with symmetry due to C Albert may be obtained from the Marsden~Weinstein reduction theory.
We also study the reduction of cosymplectic manifolds with singular momentum map by using
the results of Sjamaar and Lerman for the symplectic case.

1. Introduction

As is well known, the existence of symmetries allows us to reduce Hamiltonian systems.
More precisely, if G is a Lie group of symmetries of a Hamniltonian system (M, w, H) with a
momentum map J : M — g*, then we obtain a reduced Hamiltontian system (Mg, wp, Ho),
where 0 € g* is a regular value of J and My = J~'(0)/G. This is the statement of the
Marsden and Weinstein theorem [1, 8, 9, 10]. But if 0 is not a regular value, then M is
not a symplectic manifold. In fact, it is not even a manifold. Sjamaar and Lerman [11]
have proved that in this case My is a stratified space supporting a natural Poisson structure
whose restriction to the strata defines a symplectic structure.

On the other hand the reduection of time-dependent Hamiltonian systems has been
recently developed by Albert [3, 4] in the framework of cosymplectic manifolds. The
reduced Hamiltonian system is defined on a reduced cosymplectic manifold My, The purpose
of this paper is to extend the Albert reduction procedure to the case of singular values. To
do this we first reformulate the cosymplectic reduction theorem of Albert. In fact, we show
that, by extending the phase space, the reduced Hamiltonian system can be obtained directly
from the Marsden and Weinstein reduction procedure. Using this construction we prove that
for a singular value 0 € g*, My is a cosymplectic stratified space.

The paper is structured as follows. In section 2, we give a brief background on
cosymplectic manifolds. Section 3 is devoted to obtaining the cosymplectic reduction
theorem from the symplectic one by extending the phase space. In section 4 we recall
the main results of Sjamaar and Lerman. The cosymplectic reduction for singular values
is developed in section 5. Finally, we study the dynamics on the reduced cosymplectic
stratified space.
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2. Cosymplectic manifolds

A cosymplectic manifold is a triple (M, 2, n) consisting of a smooth (2n + 1)-dimensional
manifold M with a closed 2-form € and a closed 1-form 5, such that £2° An # 0 (see [7, 6]).
In particular, 27 A n yields a volume form on M. Consider the bundle homomorphism

b:TM — T*M X eTM — b(X) = ixQ(x) + (xnlx)nx).

Then b is a vector bundle isomorphism. We denote by R the Reeb vector field, defined
by

fRS):O fRn=1

ie. R=5b"1(n).
There exist, in the neighbourhood of every point, cancnical coordinates @, q, p,
i=1,...,n, such that

Q=dg' Adp;,n=4dt

(t, g°, pr) will be called Darboux coordinates. Then we have R = 3/51.
To each function f € C*(M) one can associate three vector fields on M:
(1) The gradient vector field grad f, which is defined by

grad f = b~1(d /).
or, equivalently,
fgrad f2 =df — R(f)n fgrad ;71 = R(f).
(2) The Hamiltonian vecior field Xy according to
Xp=b7"(df — R(HM
or, equivalently,
i 2=df —R(f  ixn=0.

(3) The evolution vector field Ef = R 4 Xy.
In Darboux coordinates we find

afa  f 8 af B

e T A T
x, U3 ¥
d 9p: 3¢ 99 Op;

a a8 of @
Ef =t

8t dp;dg' Bg'dp;

Cosymplectic manifolds are a natoral framework to develop the geometric formulation
of time-dependent Hamiltonian systems (gee [3, 6, 7T1). The dynamics on a cosymplectic
manifold (M, Q, ») are introduced by giving a Hamiltonian function 2 € C®(M). In fact,
the integral curves of the evolution vector field E;, satisfy the Hamilton or motion equations
corresponding to h:
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An alternative way to introduce the evolution vector field Ej is as follows: first
we modify the cosymplectic structure (§2, ) to obtain a new cosymplectic structure
(&, = Q4 dh An, n). Then Ej is just the Reeb vector field of the modified cosymplectic
structure (25, n).

The Poisson bracket of two functions f, f' € C*(M) is defined by
{f, [’} = Q(grad f, grad f) = Q(Xs, Xp) = Q(Ef, Ef) .

Then M turns out to be a Poisson manifold, the symplectic leaves of which are precisely
the leaves of the integrable distribution kern.
If A € C°°(M) is a Hamiltonian function on M, then we have

Exf =Xpf +R() (2.1)
for any function f € C®(M). In terms of Poisson brackets (2.1) becomes
Enf ={f.h}+ R(S). 22)
From (2.2) we deduce that the flow yu(t, x} of E, is characterized by
d
a‘f(}’iz(t, X)) =1{Ff, h}yale, )} + R(F) (e, x)) - (2.3)

An automorphism of the cosymplectic structure (M, Q, ») is a diffeomorphism ¢ : M —>
M such that

CPR=0Q P*n =1

3. Casymplectic reduction of cosymplectic manifolds with symmetry

Suppose that there exists a left action & : Gx M — M of a Lie group G on a cosymplectic
manifold (M, £2, ). We always assume that both G and M are connected. The Lie algebra
of G will be denoted by g and its dual by g*. For each g € G we let &, = ®(g."),
the induced transformation on M. The fundamental vector field, or infinitesimal generator,
associated with £ € g is the vector field £y on M defined by £p(x) = £d(expts, x){,_-

An action ¢ of a Lie group & on a cosymplectic manifold (M, £2, ) is called
cosymplectic, if for each g € G the comesponding ¢, is an automorphism of the
cosymplectic structure, i.c. 32 =2, den =1.

A momentum map is a function J : M — g* such that if we define

Je(x) = (5, J(x))

for all £ e g, then R(J;) = O and the Hamiltonian vector field X, is just £&;. The
momentum map J is said to be Ad*-equivariant if

Jo®g=AdlioJ

for each g € G, where Ad” is the co-adjoint representation of G on g*.

For given p € g* we denote by G, the isotropy group of p. By the Ad*-equivariance
of J it follows that the level subset Z, = J~'(u) is an invariant subset for the restriction
of ® to G,. Moreover, if u is a regular value of J, then Z, is a submanifold of M and
& induces a2 smooth action of G, on Z,. Following Libermann and Marle [7] we will say
that this action is simple if the orbit space Z,/G,, admits a manifold structure such that the
canonical projection , : Z, — Z,/G, is a surjective submersion. This will for instance
be the case if the action is free and proper. In the following it will always be assumed that
G, is connected, so the fibers of 7, are also connected.

Albert [3, 4] has established the following cosymplectic reduction theorem.
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Theorem 3.1. There exists a unique cosymplectic structure (§£2,, ,,) on the quotient space
My =Z,/G, such that

pSt=mSy and jun =mn,,
with j, : Z, — M the inclusion map and =, : Z, — M, the canonical projection.

Further, the restriction of the Reeb vector field R to Z,, projects onto M, and its projection
R, is just the Reeb vector field for the reduced cosymplectic structure ($2,,, 7,).

Now suppose that % is a Hamiltonian function on M such that it is G-invariant, ie.
hod, =i, for any g € G. Then & o j, projects to a function %, defined on M,. Denote
by Ej the evolution vector field determined by 4. Then Ej, is tangent to Z,, and it projects
to a vector field (Ey), on M, which is precisely the evelution vector field E,, determined
by A, on the reduced cosymplectic manifold M,,. Hence the dynamics on M are projected
onto the dynamics on M. Notice that

dim My, = dim M — dim G — dim G,

and thus we have reduced the number of motion equations. The main problem now is to
reconstruct the dynamics on M from the dynamics on M.

Next we shall prove that the reduction of cosymplectic manifolds may be obtained from
the Marsden—Weinstein procedure by extending the phase space M.

Lemma 3.2, Let M be a manifold and €2,  two differential forms on M with degrees 2 and
1 respectively. Consider on M = M x R the differential 2-form w = pr*Q2 + pr*n A ds,
where s € R and pr : M —> M is the canonical projection. Then
(a) (M, 2, n) is a cosymplectic manifold if and only if (M, @) is a symplectic manifold.
{b) In such a case, pr is a Poisson morphism.

Proof. We proceed in two steps. (a) Let dim M = 2n. A straightforward calculation gives
the relation @” = n - pr*(£2"~! A p) A ds. Thus

"1 A is a volume form <= " is 2 volume form.
(b) Let f, f': M — R be two smooth functions. We need to prove
pri{f, il = pr™ fo " Y (3.1)
where
{fi fim =Xz, Xp) and {pr*fipr* 'l = @ (Xpre g, Xpeo 7). (3.2)

Here { , }u (respectively, { , };,) denotes the Poisson bracket on M (respectively,
Mg). Also, Xy (respectively, X7} denotes the Hamiltonian vector field associated to
F (respectively, pr* f) relative to (2. n) (respectively, @), So,

Xy is the solution of: ix,Q =df — R(fin, ixn=0
and

Xpres is the solution of: iy, w=dpr’f.
In a similar way, the same relations hold for f. A straightforward calculation gives
Xperp = Xy — R( f)ﬁas' and therefore we get (3.1). Here R is the Reeb vector field
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determined by the cosymplectic structure ($2, ). We observe that the Hamiitonian vector
field Xg+¢ projects onto M and its projection is just the Hamiltonian vector field X, 0O

Suppose again that M is & cosymplectic manifold with cosymplectic structure (£2, n)
and G is a Lie group acting on M such that there exists 2 momentum map J : M — g*.
Then we can extend the action of G on M to M as follows:

S:GxM— M g(xs)=(¢(x),s)

forany s € R, x € M and g& G. Now we construct the 2- form & = Q+nAds on M. Thus

o is a symplectic form and the group & acts on (M w) by symplcctomorphlsms Also the
momentum map J may be extended to a momentum map J : M —> g* by J(x, 5} = J(x).
A direct computation shows that J is Ad*-equivariant iff Tis Ad *-equwanant too. Further,
since the level set Z,,l =J Yy = = Z, xR, then we also have that i € g* is a regular value
of J iff it is a regular value of 7. In such a case we can apply the Marsden—Weinstein
procedure and obtain a reduced symplectic manifold M,, endowed with a reduced symplectic
form e, such that ‘

~_ %
Lo =T ,0,

with 7, : Z, —» M the inclusion map and E fp — ﬂw?# = Z,/G, the canonical
projection. We remark that the action of G, on Z,, is simple if and only if the action of
G, on Z, is simple. A direct computation shows that M, = M, x R. Also, the reduced
cosymplectic structure may be obtained from w,, as follows:

Qy = () '@y Ne = —(t0)" Gajas wu)
where 1o : M, —> ﬂu = M, x R is given by to(x) = (x,0).
Now suppose that a Hamiltonian function # on M is given. We define an extended
Hamiltonian h on M by

ﬁ(x,s):h(x)+s xeM sekR.
Thus, the corresponding Hamiltonian vector field X7 is given by
l'_:{E w = d};
and then we deduce
9
Xy=Ey— R(h)— 33
B H ( ) 33 ( )

from which we obtain X3(s) = —R(h). Then if we know the reduced Hamiltonian system
X7, we obtain that
5 .
Ey, =X; — X3, (3)5‘; (3.4)
and, conversely, given the reduced evolution vector field E;, then we have
3
X, = En, = Rulh) s -

Observe that the vector field X3 is projectable onto M and its projection is just Ej.
Hence the Hamiltonian flow of X; projects onto the flow of E;. The same is true for the
reduced vector fields X and Ej . Moreover, a direct computation shows that

{7, P =0 US, e + RGP — RUFY)

Remark. We notice that M may be extended by multiplying by S' and then we substitute
ds by 6, where 8 is the length form on S'. The above procedure also works in this case.
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4. Symplectic reduction on singular values

Consider (M,w) 2 symplectic manifold, ® : G x M —— M a lefi action by
symplectomorphisms and J : M — g* a momentum map. For the sake of simplicity
we shall suppose that G is compact (although most of the results hold for proper actions
of Lie groups) and that 0 € g* is a singular value, that is, the group G does not act frecly
on the zero level set Z = J~1(0) (the ‘shifting trick’ allows one to talk exclusively about
reduction at 0 [11])-

Note that the quotient My = Z/( cannot be a symplectic manifold: it is not even
a manifold! But the symplectic structure remains. Sjamaar and Lerman [11] proved that
this quotient is a singular manifold whose strata are symplectic manifolds, these symplectic
structures fit together nicely and define a structure of Poisson algebra on Mp. This gives
rise to the notion of stratified symplectic space.

4.1. Symplectic stratified space

A stratified space X is a singular manifold which is the union of a locally finite family Sx

of smooth manifolds such that the local structure of X is conical (see for example [5, p 12]
for the exact definition).

A smooth structure on X is a subalgebra C°°(X) of the algebra of continuous functions

having the property that, for any f € C*(X) and for any stratum S, the restriction fls is
smooth.

A siratified space X endowed with a smooth structure is said 1o be a smooth siratified
space.

Example 1. The zero level set Z possesses a natural structure of smooth stratified space,
where

Sz = {connected components of Z,, with K subgroup of G},
and
C®2Z)={f:Z— R/ there exists a G-invariant F € C®°(M) with f = jj F}.

Here, K denotes a subgroup of G, Z,,, = {x € Z / the isotropy subgroup G, is conjugate
to K} and jo : Z — M the natural inclusion.

Example 2. The above structure is invariant under the action of G, it induces on the reduced
space M a structure of smooth stratified space, where

Su, = {ma(S) / § € Sz}
and
C¥FMpy={f :My—R /a5 f € C¥Z)}.
Here, mg : Z — My is the canonical projection.
In the above two examples the smooth structure is taken from [2].
A smooth stratified space X is a stratified symplectic space if

e cach stratum S < Sy is a symplectic manifold,
e {%(X) is a Poisson algebra and
e the embedding S < X is Poisson.

In the same way, we define the notion of cosymplectic stratified space, exchanging
symplectic by cosymplectic in the previous definition.
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4.2. Vector fields on a smooth space

Although smooth stratified spaces are not manifolds, we still have the notion of vector field.
A continuous map f : X — X’ between two smooth stratified spaces is smooth if

gofeC®(X) forany ge C®(X).
Example 3. The inclusion jo: Z <> M is a smooth map.
Example 4. The projection g : Z — My is a smooth map.
Example 5. The inclusion § < X is smooth, for any stratum S € Sy.

A continuous flow ¥ : R x X — X is a smooth flow if y, is smooth for any 7 € R.

A linear map V : C¥(X) — C*®(X) is a vector field if there exists a smooth flow
¥ : R x X — X verifying

Crrem=v(He fray  feCOX).

The set of vector fields on X will be denoted by X(X).
Two vector fields V € F(X), V' € Z(X') are relared by a smooth function f X=X

if
Vigo fY(x) = V' (g)(f(x)

for any g € C*(X’) and x € X, We shall write £,V = V', If f is an onto map we shall
say that f projects V onto V’. If f is the inclusion we shall say that V = V’|y is the
restriction of V. The vector field V is stratified if for any stratum § € Sy there exists
Vs € X(8) with Vis = V;.

4.3. Symplectic reduction in a singular value

Sjamaar and Lerman proved that the reduced space My, endowed with the above smooth
stratified structure, is in fact a stratified symplectic space [11].

The symplectic structure in each Z, /G is given by the differential 2-form Dy
determined by the equation:

ermm = ]mw @D

where j, : Z,,, — M is the inclusion and =, : Z,,, — Z,,,/G is the canonical projection.
The Poisson bracket {f, f'} of two elements f, f " & C®(Myp) is defined by the equation

w5 U FY = j5{F, F} 4.2)
where F, F’ are G-invariant smooth functions on M with j§F = = f, and similarly for
.

4.4. Dynamics on siratified symplectic spaces

Dynamics on a stratified symplectic space are introduced by a Hamiltonian function
h € C*®(Mp). Then the motion equations are given by:

Xu(F) =1f.hlu, forany feC*(Mo) 4.3
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which is written in terms of the Poisson bracket because My is not a manifold. Sjamaar and
Lerman proved that, for any Hamilionian £ € C*{My), there exists a unique vector field
Xy € X(My) satisfying the motion equations. The vector field X, is called the Hamiltonian
vector field associated to h.

The Hamiltonian vector field X, is a stratified vector field. Moreover, since the natural
inckusion i, : Z,, ~ My is a Poisson map, then the restriction of X; to Z,, /G equals the
Hamiltonian vector field X,. e defined by the Hamiltonian function i* i h on (Z,,, wy,)-

5. Cosymplectic reduction on singular values

Following the ideas of section 3, we prove in this section that the cosymplectic reduction on
singular values may be obtained from the Sjamaar-Lerman reduction theory by extending
the phase space M. Here, the stratified cosymplectic space plays the role of the stratified
symplectic space.

Consider the situation of section 3, that is, (M, €2, n) is a cosymplectic manifold,
$:G x M — M is a cosymplectic action and J : M — g* is a momentum map. We
shall suppose that ¢ is compact and that 0 € g* is a singular value. The reduced space
My = Z /G is also naturally endowed with a structure of smooth stratified space where Sy,
and C*° (Mo} are defined as in the symplectic case.

We consider the notations M ®, J and @ of section 3. Now, (M @) is a symplectic
manifold where G acts by symplectomog'phlsms and J: M — g* is a momentum map with
0 € g* asingular value. We shall write Z = Z x R the zero level set of T and M{) =Z ]G
the reduced space, which is a symplectic singular space.

The bracket on C®(Mp) is given by the next lemma.

Lemma 5.1. Given f, f' € C®(Mp) there exits a unique smooth function {f, f'lu, €
C®(My) satisfying
orofiersf Im, = prolhs s G.b

Moreover, the algebra C°°(Myp) endowed with this bracket is a Poisson algebra in a way
such that the natural projection prg : My — Mp is 2 Poisson morphism.
Progf. Notice that, if (5.1) is satisfied, then (C*®{Mg), {—, —1) is a Poisson algebra and prg
is a Poisson morphism. Consider F and F’ to be two G-invariant functions on M, with
JBF =ng f and j§F' = ng f'. The bracket {F, F'}y, is a G-invariant smooth map on M.
Then, there exists g € C(My) with n3g = {F, F'}u,. Let g = {f, f'Im,. If the equation
{5.1) holds, then the bracket is well defined. . - -

Consider the canonmical projections & : Z - My and Pr : Z — Z. Since
7y 0 Pr = prg o %y and the map %, is onto then (5.1) is equivalent to

T s foeo S Yig, = Primglf Pl
From the definition of these brackets (cf (4.2)) we get

Jolpr"F,pr* F'Y g =Pr* jo{F, F'lu
where pr : M — M is the canonical projection. Finally, the equality (5.1) comes from the
relation pr o 7) = fy o Pr and the fact that pr is a Poisson morphism (¢f lemma 3.2). O

Theorem 5.1. The reduced space is a2 cosymplectic stratified space. For any subgroup X of
G, the manifold Z,, /G admits a cosymplectic structure ($2,,, 7,,) such that

j'Tuc)""'zﬁ'“ };]Q and ”:;n'? = j(:nn (5'2)
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where j,, : Z,, “> M is the inclusion map and =, : Z,, = Z,,/G the canonical
projection,

Further, the restriction of the Reeb vector field R of (£2, n) to Z projects onto a stratified
vector field Ry on My and its restriction to any Z,, /G is just the Reeb vector field R, for

the reduced cosymplectic structure (£2,,,, 1., -

Proof. We proceed in several steps. :
. ® Cosymplectic structure on the strata. Let K be a subgroup of G. Notice the relation
M, = M,, xR, The connected components of the manifold

Zy,/G =(Z,,/C) xR (5.3)

are the strata of the reduced space A?fg. The symplectic structure of the manifold E( ol G is
given by a differential form w,,, satisfying

ot ~
T = Ji @

where %, : Z, — E(K,/G is the canonical projection and 7, : Z,,, <> M is the
inclusion map. Since @ = £+ 5 A ds, a straightforward calculation shows the existence of

two differential forms £2,,, and n,, on Z,,, verifying
Oy = Sy + Ny, A5

Since w,,, is 2 symplectic form on (Z,,/G) x R then (,,,,n,,,) defines a cosymplectic
structure on Z,, /G (cf lemma 3.2). By construction these forms satisfy (5.2).

o The embedding Z,,/G — M, is Poisson. Consider the following commutative
diagram

~

—~ (€4] s~
Zuc]/G MO
PI Pro
i(ls’)
Zy/G My

where the horizontal arrows are the natural inclusions and the vertical arrows are the
canonical projections. From the lemmas 3.2 and 5.1 we know that pr,, and pro are
Poisson morphisms. Since ﬂ’:[o is a symplectic stratified space we know that ., is a Poisson
morphism. Since pr,,, is an onto map, we get that [, is a Poisson morphism.

® Reeb vector field. Let y : R x M — M be the smooth flow of the Reeb vector field
R. Since R is invariant and satisfies R(J) = 0 then it induces the following smooth flows:

Viz:BxZ—=>2Z and y:RxMy— M.

Let Ry € X(Mg) be the vector field defined by 3. By construction Ry is the projection by
7o of the restriction R[z. The invariance of y implies that Ry is a stratified vector field.
Formula (5.2) implies that the restriction of Ry to Z,,/G is the Reeb vector field R,,,. O

6. Dynamics on stratified cosymplectic spaces

Dynamics on a stratified cosymplectic space are introduced by giving a Hamiltonian function
h € C™(Mp). Then the motion equations are:

Ex(F) = {f, h}as, + Ro(f) for any f e C®(My) (6.1)
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which are written in terms of the Poisson bracket because My is not a manifold. The vector
field E; is called the evolution vector field of the system.

6.1. Extended Hamiltonian

Given a Hamiltonian & & C*(My), the map % : My — R defined by h(x,s) = h(x) + 5
is called the extended Hamiltonian of h. Consider H M — R a smooth function
satisfying jg H = mgh. Its extended Hamiltonian H-M->Ris clearly a smooth function
and therefore £ € C°°(Mo) because J; T H = :ra"h We have

(o)e (X57l3) = X7 - (6.2)

Wiite R € X(M) Gesp. Ry € X(My)) the natral lifting of R € X(M) to # (resp.
Ro & X(My} to Mp). We have

(s (Rlz) =Ro and (pro)uRo = Ro.

Consider # = 0 and H = 0. We have iy;w = ds = igw and therefore Xz = R.
Applying the above equations we get

Xp=Ro and (pro)Xz=Rp. (6.3)

Theorem 6.2. For any Hamiltonian & € C™(Mp) there exists a unique evolution vector field
Ej. This vector field is a stratified vector field. Forany K < G, its mestriction t0 Z,,, /G is
the evolution vector field E,- ;, defined by i, h with respect to the cosymplectic structure

(g(m » n()c))

Proof. We proceed in several steps.
e Existence. Consider heC “(Mo) the extended Hamiltonian ¥ of h. Write i Rx Mo —
M, the Hamiltonian flow of X3 T E X(My). Then we have

~ d
{prof, hhig, 0 (¢, . 8)) = 2 f(Pro(yz(t, x, $))) (6.4)

for any f € C®(Mp), and (x,s) & M,. Define the smooth flow y, : R x Mg — M by
Valt, x) = pro(ypeza(t, x, 0)) . (6.5

Since prg is a Poisson map, then (6.4) becomes

(£, Bl Crne, ) + 3, Dy 036, 3, O) = £ 05, 2)

for any f € C*°(Mp), and x € Mo. Applying (4.3) and (6.3) we get

d
Ef(},h(tv x)) = ([f’ h}Mo + RU) (yh(tv x))

that is, (6.1).

e Ey is stratified. The vector field X5 is stratified, then yprzp(R x fm JG) C Em/ G, and
therefore 3, (R x Z,,,/G) C Z,,,/G. Hence, the vector field £y is stratified.
e Resiriction to a stratum. The evolution vector field £ is a solution of the equation

Ey={~h}m+Ro.
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Restricting this equality to Z ,,/G we obtain

(i{x))*Ek = [_1 im*h}zij + Rm) +

where we have used the fact that {,,, is a Poisson map and the equality 7, Ry = R,,. So,

"

Enlzys6 = G)Es = Ei 1 -

"
e Uniqueness. Since (Z,,./G, Q. 7,,) Is a cosymplectic manifold, the restriction of y;
to any stratum £, /G is completely determined by the restriction %, A. O
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