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Cosymplectic reduction for singular momentum mapst 

Manuel de M n :  and Martin Saralegis 
lnstilulo de Matematicas y FIsica Fundamental, Consejo Superior de lnvestigaciones Cientlfiw, 
Serrano 123.28006 Madrid, Spain 

Received 11 January 1993, in final form 8 June 1993 

Abstract. In this papr we prove that the cosymplectic reduction of cosymplectic manifolds 
with symmetry due to C Albert may be obtained from the Marsden-Weinstein reduction theory. 
We also study the reduction of wsymplectic manifolds with singular momentum map by using 
the nsulls of Sjamaar and Lennan~for the sympiectic m e .  

1. Introduction 

As is well known, the existence of symmetries allows us to reduce Hamiltonian systems. 
More precisely, if G is a Lie group of symmetries of a Hamiltonian system (M,  U ,  H) with a 
momentum map J : M + 8'. then we obtain a reduced Hamiltonian system (MO, 00, Ho), 
where 0 E g* is a regular value of J and MO = J-'(O)/G.  This is the statement of the 
Marsden and Weinstein theorem [l, 8, 9, IO]. But if 0 is not a regular value, then MO is 
not a symplectic manifold. In fact, it is not even a manifold. Sjamaar and Lerman [ll] 
have proved that in this case MO is a stratified space supporting a natural Poisson structure 
whose restriction to the strata defines a symplectic structure. 

On the other hand the reduction of timedependent Hamiltonian systems has been 
recently developed by Albert [3, 41 in the framework of cosymplectic manifolds. The 
reduced Hamiltonian system is defined on a reduced cosymplectic manifold MO. The purpose 
of this paper is to extend the Albert reduction procedure to the case of singular values. To 
do this we first reformulate the cosymplectic reduction theorem of Albert. In fact, we show 
that, by extending the phase space, the reduced Hamiltonian system can be obtained directly 
from the Marsden and Weinstein reduction procedure. Using this construction we prove that 
for a singular value 0 E g', MO is a cosymplectic stratified space. 

The paper is structured as follows. In section 2, we give a brief background on 
cosymplectic manifolds. Section 3 is devoted to obtaining the cosymplectic reduction 
theorem from the symplectic one by extending the phase space. In section 4 we recall 
the main results of Sjamaar and Lerman. The cosymplectic reduction for singular values 
is developed in section 5. Finally, we study the dynamics on the reduced cosymplectic 
stratified space. 

t Supported by DGICYT-SPAIN, Provecm PB91-0142. 
t E-&I: CEEMLM G CC.CSIC.ES: 
g E-mail: SARALEGI @ CC.CSIC.ES. 
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2. Cosymplectic manifolds 

A cosymplectic manifold is a triple (M, Q, q)  consisting of a smooth (2n + 1)dimensional 
manifold M with a closed 2-form D and a closed 1-form q.  such that Q" A V  # 0 (see L7.61). 
In particular, Qn A q yields a volume form on M. Consider the bundle homomorphism 

b : T M  --f~ T'M 

M de Le6n and M Suralegi 

X E T,M + b(X) = iXD(x) + (ixq(x))q(x).  

Then b is a vector bundle isomorphism. We denote by R the Reeb vectorfield, defined 
by 

i.&=O i R q = l  

i.e. R = b-'(q).  

i = 1,. . . , n,  such that 
There exist, in the neighbourhood of every point, canonical coordinates (I, q i ,  pi), 

Q =dq' Adpi, q = d I  

( t .  9;. p i )  will be called Darboux coordinates. Then we have R = a/at. 
To each function f E P ( M )  one can associate three vector fields on M: 
(1) The gradient vectorfield grad f ,  which is defined by 

grad f = b-'(df). 

or, equivalently, 

= df - R ( f h  igradfq = RCf). 

(2) The Hamiftonion vectorfield Xj according to 

Xf = b-'(df - R ( f ) q )  

or, equivalently, 

i x , Q = d f - R ( f ) q  ix,q=O. 

(3) The evolution vectorfield E ,  = R + Xp 
In Darboux coordinates we find 

Cosymplectic manifolds are a natural framework to develop the geometric formulation 
of time-dependent Hamiltonian systems (see [3, 6,71). The dynamics on a cosymplectic 
manifold (M, Q, q )  are introduced by giving a Hamiltonian function h E Cm(M). In fact, 
the integral curves of the evolution vector field Eh satisfy the Hamilton or motion equations 
corresponding to h 

dpi ah - = -- dq' ah 
d~ apt dr a41 
-=-  
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An alternative way to introduce the evolution vector field Eh is as follows: first 
we modify the cosymplectic structure (Q, q )  to obtain a new cosymplectic structure 
( a h  = Q + dh A q .  q ) .  Then E h  is just the Reeb vector field of the modified cosymplectic 
structure (Q*. q). 

The Poisson bracket of two functions f, f' E Cm(M)  is defined by 

(f. f'l = G(gradf, gradf') = QtXr, Xp) = WEf,  E,-). 
Then M turns out to be a Poisson manifold, the symplectic leaves of which are precisely 

If h E P ( M )  is a Hamiltonian function on M, then we have 
the leaves of the integrable distribution ker q .  

Ehf = x k f  + R(f) (2.1 ) 

Ehf (f, h1 f R(f) . (2.2) 

for any function f E C*(M). In terms of Poisson brackets (2.1) becomes 

From (2.2) we deduce that the flow yh (t, x )  of E h  is characterized by 

(2.3) 
d 
-f(Yh(t, X ) )  If, h}(Yh(t, 1)) f R ( f  )b'h(t, X)) . dt 

An automorphism of the cosymplectic structure (M, Q, q )  is a diffeomorphism @ : M -+ 
M such that 

$*Q=Q @ q =  q .  

3. Cosymplectic reduction of cosymplectic manifolds with symmetry 

Suppose that there exists a left action 0 : G x M 4 M of a Lie group G on a cosymplectic 
manifold (M, S2, q ) .  We always assume that both G and M are connected. The Lie algebra 
of G will be denoted by g and its dual by g*. For each g E G we let Qg z @(g, .), 
the induced transformation on M. The fundamental vector field, or infinitesimal generator, 
associated with 6 E g is the vector fieId 6~ on M defined by ~ M ( x )  = $O(exp t c ,  ~ ) l , , ~ .  

An action Q, of a Lie group G on a cosymplectic manifold (M,Q,q) is called 
cosymplectic, if for each g E G the corresponding Og is an automorphism of the 
cosymplectic structure, i.e. Q,:Q = S2, Q,:q = q.  

A momentum map is a function J : M + g* such that if we define 

Jt (x) = (5. J ( x ) )  
for all 5 E 8. then R ( J E )  = 0 and the Hamiltonian vector field X,, is just 5 ~ .  The 
momentum map J is said to be Ad*-equivarianf if 

J * = Ad:-, * J 

for each g E G, where Ad* is the co-adjoint representation of G on 8'. 
For given w E g* we denote by C, the isotropy group of /I. By the Ad*-equivatiance 

of J it follows that the level subset Z,, = J- ' (p )  is an invariant subset for the restriction 
of Q, to G,. Moreover, if p is a regular value of J ,  then Z, is a submanifold of M and 
Q, induces a smooth action of G, on Z,,. Following Libermann and Marle [7] we will say 
that this action is simple if the orbit space Z, /G ,  admits a manifold structure such that the 
canonical projection H ,  : Z, -+ Z,/G,, is a surjective submersion. This will for instance 
be the case if the action is free and proper. In the following it will always be assumed that 
G ,  is connected, so the fibers of H ,  are also connected. 

Albert [3,41 has established the following cosymplectic reduction theorem. 
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Theorem 3.1. There exists a unique cosymplectic structure (a,, q,) on the quotient space 
M, = ZJG, such that 

M de Le6n and M Saralegi 

j;Q = R&, and j ;q  = x;q,, 

with j, : Z, -+ M the inclusion map and R,, : Z, -+ M* the canonical projection. 
Further, the restriction of the Reeb vector field R to Z,, projects onto M, and its projection 
R,  is just the Reeb vector field for the reduced cosymplectic structure (Ow, q,). 

Now suppose that h is a Hamiltonian function on M such that it is G-invariant, i.e. 
h o Qg = h,  for any g E G. Then h o j,, projects to a function h,  defined on M,,. Denote 
by E h  the evolution vector field determined by h. Then Eh is tangent to 2, and it projects 
to a vector field (Eh) , ,  on M,, which is precisely the evolution vector field Ehu determined 
by h, on the reduced cosymplectic manifold M,. Hence the dynamics on M are projected 
onto the dynamics on M,,. Notice that 

dim M, = dim M - dim G - dim G, 

and thus we have reduced the number of motion equations. The main problem now is to 
reconstruct the dynamics on M from the dynamics on Mp 

Next we shall prove that the reduction of cosymplectic manifolds may be obtained from 
the Marsden-Weinstein procedure by extending the phase space M. 

Lemma 3.2. Let M be a manifold and Q, q two differential forms on M with degrees 2 and 
1 respectively. Consider on M = M x R the differential 2-form OJ = pr*Q + pr*q A ds. 
where s E R and pr : G 3 M is the canonical projection,Then 

(a) (M, Q, q )  is a cosymplectic manifold if and only if ( M ,  w )  is a symplectic manifold. 
(b) In such a case, pr is a Poisson morphism. 

Proof. We proceed in two steps. (a) Let dim k = 2n. A straightforward calculation gives 
the relation U" = n . pr*(Q"-' A q )  A ds. ThUS 

A q is a volume form a"-' w" is a volume form. 

(b) Let f, f' : M --z R be two smooth functions. We need to prove 

pr*{f. f 'h  = W'f, v*f'lij (3.1) 

where 

f 'h  = Q ( X f ,  X y )  and W*f. pr*f')g = OJCX,.,, Xpr.p). (3.2) 

Here { , ) M  (respectively, { , )go) denotes the Poisson bracket on M (respectively, 
20). Also, X f  (respectively, X , . f )  denotes the Hamiltonian vector field associated to 
f (respectively, pr'f) relative to (a, q )  (respectively, U). So, 

XI is the solution of: i,+ = df - R ( f ) q ,  ix,q = 0 

and 

X,.f is the solution of: i,y,.,m = d pr" f. 

In a similar way, the same relations hold for f'. A straightforward calculation gives 

X,,*j = X f  - R ( f ) -  and therefore we get (3.1). Here R is the Reeb vector field 
a 
as 
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determined by the cosymplectic structure (Q, q). We observe that the Hamiltonian vector 
field X,,.f projects onto M and its projection is just the Hamiltonian vector field Xf. 0 

Suppose again that M is a cosymplectic manifold with cosymplectic structure (Q , q )  
and G is a Lie group acting on M such that thze exists a momentum map J : M -+ g*. 
Then we can extend the action of G on M to M as follows: 

5 : G x @ + @ %&,s) = (Q8(x) ,  S) 

for any s E R, x E M and gc G .  Now we construct the 2-form = Q+qAds on z. Thus 
o is a symplectic form and the group G acts on (z, o) bx spplectomorp@ns. Also the 
momentum map J may be extended to a momentum map ,J : M + g* by J ( x ,  s) = J(x ) .  
A direct computaticn shows that J is Ad*-equivariant iff J is Ad'quivariant too. Further, 
since the level set Z,, = J"-'(p) =-Z, x R, then we also have that p E g* is a regular value 
of J iff it is a regular value of J .  In such a case ye can apply the Marsden-Weinstein 
procedure and obtain a reduced sypplectic manifold M,, endowed with a reduced symplectic 
form m,, such that 

To = "@, 

with ,;1 : z,, -+ E the inclusion map and SP : 2, -+ M,, = &/G, the canonical 
projection. We remark that the action of G ,  on Z,, is simple if and only if the action of 
0,  on Z,, is simple. A direct computation shows that M, = M,, x R. Also, the reduced 
cosymplectic structure may be obtained from o, as follows: 

qp = -(ro)*(ia/a,o,,) 
where LO : M,, 4 @,, = M,, x R is given by L&) = (x.0).  

Hamiltonian h on M by 

Q,, = (co)*o, 

Now suppse that a Hamiltonian function h on M is given. We define an extended 

- 
h ( x , s ) = h ( x ) + s  X E M  s E R .  

Thus, the corresponding Hamiltonian vector field Xi; is given by 
I 

i x -w=dh  

and then we deduce 

(3.3) 
a 
as 

xi; = E h  - R(h)- 

from which we obtain X,-(s) = -R(h). Then if we know the reduced Hamiltonian system 
Xi;, we obtain that 

(3.4) 
a 

Eh,' = xi;, - xi;, (SI - as 
and, conversely, given the reduced evolution vector field E h ,  then we have 

Observe that the vector field Xi; is projectable onto M and its projection is just E h .  
Hence the Hamiltonian flow of Xi; projects onto the flow of E h .  The same is hue for the 
reduced vector fields Xi;, and Eh,. Moreover, a direct computation shows that 

{ . E ~ I G  = pr*(If, f ' iM  + ~ ( f )  - RV')) . 
Remark. We notice that M may be extended by multiplying by S' and then we substitute 
ds by 0, where e is the length form on S'. The ahwe procedure also works in this case. 
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4. Symplectic reduction on singular values 

Consider ( M , w )  a symplectic manifold, : G x M 4 M a left action by 
symplectomorphisms and J : M + g' a momentum map. For the sake of simplicity 
we shall suppose that G is compact (although most of the results hold for proper actions 
of Lie groups) and that 0 E g' is a singular value, that is, the group G does not act freely 
on the zero level set Z = J-'(O) (the 'shifting trick' allows one to talk exclusively about 
reduction at 0 [ll]). 

Note that the quotient MO = Z/C cannot be a symplectic manifold: it is not even 
a manifold! But the symplectic Structure remains. Sjamaar and Lerman [ 111 proved that 
this quotient is a singular manifold whose shah are symplectic manifolds, these symplectic 
structures fit together nicely and define a structure of Poisson algebra on MO. This gives 
rise to the notion of stratified symplectic space. 

4.1. Symplectic stratij'ied space 

A stratified space X is a singular manifold which is the union of a locally b i t e  family S, 
of smooth manifolds such that the local struchue of X is conical (see for example 15, p 121 
for the exact definition). 

A smooth structure on X is a subalgebra Cw(X)  of the algebra of continuous functions 
having the property that, for any f E Cm(X) and for any stratum S, the restriction fls is 
smooth. 

A stratified space X endowed with a smooth structure is said to be a smooth stratified 
space. 
Example 1.  The zero level set Z possesses a natural structure of smooth stratified space, 
where 

SZ = {connected components of Z,,, with K subgroup of G), 

M de Le6n and M Saralegi 

and 
C"(Z) = {f : 2 3 E% / there exists a G-invariant F E Cm(M) with f = $ F ) .  
Here, K denotes a subgroup of C, Z,, = (x E Z / the isotropy subgroup G, is conjugate 
to K} and jo : 2 + M the natural inclusion. 

Example 2. The above structure is invariant under the action of G, it induces on the reduced 
space M O  a structure of smooth stratified space, where 

SMo (zO(s) / s E S Z l  
and 

Cm(Mo) = {f : MO -+ E% / z; f E C"(Z)} . 
Here, HO : Z + MO is the canonical projection. 

In the above two examples the smooth structure is taken from 121. 
A smooth stratified space X is a stratijied symplectic space if 

each stratum S E SX is a symplectic manifold, 
Cm(X) is a Poisson algebra and 
the embedding S + X is Poisson. 

In the same way, we define the notion of cosymplectic smtified space, exchanging 
symplectic by cosymplectic in the previous definition. 
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4.2. Vectorjields on a smooth space 

Although smooth stratified spaces are not manifolds, we still have the notion of vector field. 
A continuous map f : X + X' between two smooth stratified spaces is smooth if 

g 0 f E CyX) for a n y  g E C"(X'). 

Example 3.  The inclusion j o  : Z c-) M is a smooth map. 

Example 4.  The projection 1r0 : Z + MO is a smooth map. 

Example 5. The inclusion S c-) X is smooth, for any stratum S E SX. 

A continuous flow y : B x X + X is a smoothflow if yt is smodth for any t E R 
A linear map V : C"(X) -+ Cm(X) is a vector field if there exists a smooth flow 
y : R x X + X verifying 

d 
dt - f W , X ) )  = V ( f ) ( X )  for any f E C"(X). 

The set of vector fields on X will be denoted by X(X). 

if 
' h o  vector fields V E X(X), V' E X(X') are relared by a smooth function f : X + X' 

V ( g  0 f)(x) = V ' ( g ) ( f ( x ) )  

for any g E C"(X') and x E X. We shall write f,V = V'. I f f  is an onto map we shall 
say that f projects V onto V'. If f is the inclusion we shall say that V = V'lx is the 
restriction of V. The vector field V is strafifred if for any stratum S E SX there exists 
VS E X(S) with VIS = VS. 

4.3. Symplectic reduction in a singular value 

Sjamaar and Lerman proved that the reduced space MO, endowed with the above smooth 
stratified structure, is in fact a stratified symplectic space [ I l l .  

The symplectic structure in each Z,, , /G is given by the differential 2-form o,~ ,  
determined by the equation: ~~ 

x ; , ~ , ~ ,  = i:X,w (4.1 ) 

where j,,, : Z,,, - M is the inclusion and nCzl : Z,, + ZJG is the canonical projection. 
The Poisson bracket If, f') of two elements f, f' E C"(M0) is &fined by the equation 

(4.2) 

where F, F' are G-invariant smooth functions on M with j;F = z;f, and similarly for 
f', F'. 

4.4. Dynamics on strutifred symplectic spaces 

Dynamics on a stratified symplectic space are introduced by a Hamiltonian function 
h E C"(M0). Then the motion equations are given by: 

$If. f'l = j ; ( F ,  F') 

X d f )  = ( f . h h o  for any f E Cm(Mo) (4.3) 
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which is written in terms of the Poisson bracket because MO is not a manifold. Sjamaar and 
Lerman proved that, for any Hamiltonian h E Cm(Mo), there exists a unique vector field 
X h  E X(M0) satisfying the motion equations. The vector field x h  is called the Hamiltonian 
vectorfield associated to h. 

The Hamiltonian vector field X, is a stratified vector field. Moreover, since the natural 
inclusion i,,, : Z,,, + MO is a Poisson map, then the restriction of Xh to Z,,, JC equals the 
Hamiltonian vector field Xp h ,  defined by the Hamiltonian function i:,h on (Z,,,, qS). 

5. Cosymplectic reduction on singular values 

Following the ideas of section 3, we prove in this section that the cosymplectic reduction on 
singular values may be obtained from the Sjamaar-Laman reduction theory by extending 
the phase space M. Here, the stratified cosymplectic space plays the role of the stratilied 
symplectic space. 

Consider the situation of section 3, that is, (M, Q, q)  is a cosymplectic manifold, 
0 : G  x M -+ M is a cosymplectic action and J : M -+ g* is a momentum map. We 
shall suppose that G is compact and that 0 E g* is a singular value. The reduced space 
MO = Z/G is also naturally endowed with a structure of smooth stratified space where SM, 
and (?“MO) are defined as in fhe y m p c t i c  case. 
We consider the notations M, a, J and OJ of section 3. Now, (E,@) is a symplectic 

manifold where G acts by symplectomorphisms and J : M + g* is a momentum-mapjith 
0 E g* a singular value. We shall write Z = Z x R the zero level set of J and MO = Z/G 
the reduced space, which is a symplectic singular space. 

Lemma 5.1. Given f ,  f E Cm(Mo) there exits a unique smooth function If, f l} ,wo E 
Cm(Mo) satisfying 

M de Le6n and M Saralegi 

<XI 

- -  

The bracket on C”(Mo) is given by the next lemma 

{PC,~.P~VI,G~ = p r W  f h .  (5.1) 
Moreover, the algebra Cm(Mo) endowed with this bracket is a Poisson algebra in a way 

such that the natural projection pro : MO -+ MO is a Poisson morphism. 

Proof. Notice that, if (5.1) is satisfied, then (Cm(Mo), I-, -1) is aPoisson algebra and pro 
is a Poisson morphism. Consider F and F‘ to be two G-invariant functions on M, with 
jl F = x; f and j t F ’  = x:f’. The bracket {F, F ’ ) M ~  is a G-invariant smooth map on M. 
Then, there exists g E Cm(M0) with ir,*g = IF,  F’ )M~.  Let g = If, f ) } ,wo .  If the equation 
(5.1) holds, then the bracket is well defined. 

Since 
JQ o Pr = pro o EO and the map 50 is onto then (5.1) is equivalent to 

Consider the canonical projections Zo : 2 -+ $0 and Pr : z” -+ Z. 

;io’b*of. prEf‘kio = Pr*r$(f, f ’ 1 M v  
From the definition of these brackets (cf (4.2)) we get 

X{pr*F, pr*F’],~ = k’r*j,*[F, F‘]M 

where pr : -+ M is the canonical projection. Finally, the equality (5.1) comes from the 
relation pr o 5 = j o  o Pr and the fact that pr is a Poisson morphism (cf lemma 3.2). 0 
Theorem 5.1. The reduced space is a cosymplectic stmtified space. For any subgroup K of 
G, the manifold ZJG admits a cosymplectic structure (Q,,,, qX,) such that 

nt;,%, = i;,Q and r;,v = i;,v (5.2) 
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where j , , ,  : Z,,, + M is the inclusion map and nix, : Z,,, + Z,, , /G the canonical 
projection. 

Further, the restriction of the Reeb vector field R of (Q, q )  to Z projects onto a stratified 
vector field Ro on MO and its restriction to any Z,,,/G is just the Reeb vector field R,,, for 
the reduced cosymplectic structure (a,,,, q,o). 

Proof. We proceed in several steps. 
e Cosymplectic structure on the strata. Let K be a subgroup of G. Notice the relation 

(5.3) 

= MiC) x R. The connected components of the manifold 

%,/G = (ZCx, /G)  x X% 

= c,, 
are the strata of the reduced space ko. The symplectic structure of the manifold z(,/G is 
given by a differential form mix, satisfying 

- - - 
where Z,K, : Z,,, + Z,,,/G is the c&onical projection and xKB : Z,,, + M is the 
inclusion .map. Since o = Q + r )  A ds, a straightforward calculation shows the existence of 
two differential forms Q,,, and ‘Irx,  on Z,,, verifying 

%, = Q,,, + r ) K  A ds 
Since qX1 is a symplectic form on ( Z c R , / G )  x R then (Q,,,, qX,) defines a cosymplectic 
structure on Z,, , /G (cf lemma 3.2). By construction these forms satisfy (5.2). 

e The embedding Z,,,/C + MO is Poisson. ,Consider the following commutative 
diagram 

I Pr W, 

I I K ,  
Zim/C - MO 

where the horizontal arrows are the natural inclusions and the vertical arrows are the 
canonical projections. From the lemmas 3.2 and 5.1 we know that pr,, and pro are 
Poisson morphisms. Since ko is a symplectic stratified space we know that i,, is a Poisson 
morphism. Since pr,,, is an onto map, we get that i,,, is a Poisson morphism. 

e Reeb vectorfield. Let y : R x M + M be the smooth flow of the Reeb vector field 
R. Since R is invariant and satisfies R ( J )  = 0 then it induces the following smooth flows: 

Y I Z  : R x Z + Z and yo : R x MO --t MO. 
Let Ro E X(Mo) be the vector field defined by yo. By construction RO is the projection by 
no of the restriction Rlz. The invariance of y implies that RO is a stratified vector field. 
Formula (5.2) implies that the resbiction of Ro to Z,,,/G is the Reeb vector field R,,,. 0 

6. Dynamics on stratified cosymplectic spaces 

Dynamics on a stratified cosymplectic space are introduced by giving a Hamiltonian function 
h E Cm(Mo). Then the motion equations are: 

EAf) = (f. h)Mo + R O W  for any f E C Y M O )  (6.1) 
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which are written in terms of the Poisson bracket because MO is not a manifold. The vector 
field E h  is called the evolution vector field of the system. 

M de Ledn and M Saralegi 

6.1. Extended Hamilronian 

Given a Hamiltonian h E Cm(Mo), the map i; : GO 3 R defined by Z(x, s) = h(x) + s 
is called the extended Hamiltonian of h. Consider_H : M + R a smooth function 
satisfying j ;  H,= z;h. its extended Ha@toniF I? : M + R is clearly a smooth function 
and therefore h E Cm(M0) because X H  = ji,*h. We have 

@o)* (XFIZ) = xi;. (6.2) 

E E(&)) the natural l i n g  of R E X(M)  to 2 (resp. Write R E x(G) ([esp. 
RO E X(M0) to $0). We have 

(ZOL (WE) = RO and (pro)& = RO . 
Consider h = 0 and X = 0. We have i x , p  = ds = i w  and therefore X j j  = R. 

Xi;  = % and (pro).XF = Ro . (6.3) 

Theorem 6.2. For any Hamiltonian h E Cm(Mo) there exists a unique evolution vector field 
Eh.  This vector field is a stzatified vector field. For any K < G, its restriction to Z,,/G i s  
the evolution vector field E p  h defined by i k h  with respect to the cosymplectic structure 

Applying the above equations we get 

(XI 

(%,* nw). 
Proof. We proceed in several step. 
._Existence. Consider h E Cm(M0) the extended Hamiltonian of h. Write yg; : R x $0 -+ 
MO the Hamiltonian flow of Xi; E X(&). Then we have 

(6.4) 
- d 

I P r 3  hlz0(yg;(t, x .  s)) = z f @ r o ( x ( t .  x ,  s))) 

for any f E Cm(Mo), and ( x . s )  E GO. Define the smooth flow yh : R x MO + MO by 

Yh(t, x )  = PrO(Ypr;h(', x ,  0)) . (6.5) 

Since pro is a Poisson map, then (6.4) becomes 

d 
dt If~hlhf~(Yh(t ,X))  + ~ P ~ ~ f ~ ~ l , i j o ( ~ @ ~ X ~ o ) )  = - f f Y h @ , X ) )  

for any f E Cm(Mo), and x E MO. Applying (4.3) and (6.3) we get 

that is, (6.1). 
Eh iS stratified. The vector field Xi; is stratified, then Ypr;h(R x Z(JG) c zcK,/G, and 

therefore yh(R x Z,, , /G) C Z(,, /G. Hence, the vector field Eh is stratified. 
Reshktion to a stratum. The evolution vector field Eh is a solution of the equation 

En = I-, h1hfo + Ro . 
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Restricting this equality to Z, , , /G we obtain 

(i&& = [-. ~ l x l * h b , K ~ / ~  f R,,, , 
where we have used the fact that i,,, is a Poisson map and the equality i,,,,Ro = R,,,. So, 

Uniqueness. Since (ZJG, nl,,, qrx,) is a Cosymplectic manifold, the restriction of yh 
U to any stratum Z,, , /G is completely determined by the restriction i:r,h. 
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